Independent control by each female gamete prevents the attraction of multiple pollen tubes.

نویسندگان

  • Daisuke Maruyama
  • Yuki Hamamura
  • Hidenori Takeuchi
  • Daichi Susaki
  • Moe Nishimaki
  • Daisuke Kurihara
  • Ryushiro D Kasahara
  • Tetsuya Higashiyama
چکیده

In flowering plants, double fertilization is normally accomplished by the first pollen tube, with the fertilized ovule subsequently inhibiting the attraction of a second pollen tube. However, the mechanism of second-pollen-tube avoidance remains unknown. We discovered that failure to fertilize either the egg cell or the central cell compromised second-pollen-tube avoidance in Arabidopsis thaliana. A similar disturbance was caused by disrupting the fertilization-independent seed (FIS) class polycomb-repressive complex 2 (FIS-PRC2), a central cell- and endosperm-specific chromatin-modifying complex for gene silencing. Therefore, the two female gametes have evolved their own signaling pathways. Intriguingly, second-pollen-tube attraction induced by half-successful fertilization allowed the ovules to complete double fertilization, producing a genetically distinct embryo and endosperm. We thus propose that each female gamete independently determines second-pollen-tube avoidance to maximize reproductive fitness in flowering plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gamete Fusion Is Required to Block Multiple Pollen Tubes from Entering an Arabidopsis Ovule

In double fertilization, a reproductive system unique to flowering plants, two immotile sperm are delivered to an ovule by a pollen tube. One sperm fuses with the egg to generate a zygote, the other with the central cell to produce endosperm. A mechanism preventing multiple pollen tubes from entering an ovule would ensure that only two sperm are delivered to female gametes. We use live-cell ima...

متن کامل

Fertilization Recovery after Defective Sperm Cell Release in Arabidopsis

In animal fertilization, multiple sperms typically arrive at an egg cell to "win the race" for fertilization. However, in flowering plants, only one of many pollen tubes, conveying plant sperm cells, usually arrives at each ovule that harbors an egg cell. Plant fertilization has thus been thought to depend on the fertility of a single pollen tube. Here we report a fertilization recovery phenome...

متن کامل

Membrane-Bound RLCKs LIP1 and LIP2 Are Essential Male Factors Controlling Male-Female Attraction in Arabidopsis

Successful sexual reproduction in animals and plants requires communication between male and female gametes. In flowering plants, unlike in animals, eggs and sperm cells are enclosed in multicellular embryo sacs and pollen grains, respectively; guided growth of the pollen tube into the ovule is necessary for fertilization. Pollen tube guidance requires accurate perception of ovule-emitted guida...

متن کامل

Female gamete competition in an ancient angiosperm lineage.

In Trimenia moorei, an extant member of the ancient angiosperm clade Austrobaileyales, we found a remarkable pattern of female gametophyte (egg-producing structure) development that strikingly resembles that of pollen tubes and their intrasexual competition within the maternal pollen tube transmitting tissues of most flowers. In contrast with most other flowering plants, in Trimenia, multiple f...

متن کامل

Female Control of Male Gamete Delivery during Fertilization in Arabidopsis thaliana

Fertilization in both animals and plants relies on the correct targeting of the male gametes to the female gametes. In flowering plants, the pollen tube carries two male gametes through the maternal reproductive tissues to the embryo sac, which contains two female gametes. The pollen tube then releases its two male gametes into a specialized receptor cell of the embryo sac, the synergid cell. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental cell

دوره 25 3  شماره 

صفحات  -

تاریخ انتشار 2013